In power electronics, semiconductors are based on the element silicon – but the energy efficiency of silicon carbide would be much higher. Physicists of the University of Basel, the Paul Scherrer Institute and ABB explain what exactly is preventing the use of this combination of silicon and carbon in the scientific journal Applied Physics Letters.
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain. This allows organisms to build a highly complex neuronal network with only a limited number of genes. The study describing a detailed map of neuronal splicing conducted by a research team at the Biozentrum, University of Basel, has now been published in "Nature Neuroscience".
Scientists from Basel have investigated the activity of stem cells in the brain of mice and discovered a key mechanism that controls cell proliferation. According to the researchers, the gene regulator Id4 controls whether stem cells remain in a state of rest or enter cell division. The results were published in "Cell Reports" and may be relevant for treating neurodegenerative disease in human brains.
The summer of 2015—the second hottest summer in Switzerland since 2003—caused more than 2,700 additional emergency admissions to Swiss hospitals. The most frequent causes were infectious diseases and diseases of the genitourinary system, as well as influenza and pneumonia.
Stargardt disease is a hereditary eye disease that leads to visual defects and the loss of sight. A study has now shown that autofluorescence imaging might offer a way to assess whether novel treatments are effective at slowing down vision loss.
Research groups at the University of Basel and the University Hospital Basel have uncovered how cancer cells in brain tumors promote their own growth. In order to achieve this, the cancer cells inhibit growth receptor degradation in the brain’s cells and intensify receptor signal transmission.
The neurotransmitter brain-derived neurotrophic factor (BDNF) acts in the muscle, so that during strength training endurance muscle fiber number is decreased. Researchers at the University of Basel’s Biozentrum have more closely investigated this factor. Their results also provide new insights into age-related muscle atrophy.
After nerve injury, the protein complex mTORC1 takes over an important function in skeletal muscle to maintain the neuromuscular junction, the synapse between the nerve and muscle fiber. Researchers at the University of Basel’s Biozentrum have now shown that the activation of mTORC1 must be tightly balanced for a proper response of the muscle to nerve injury.
Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.