x
Loading
+ -

Künstliche Intelligenz als psychotherapeutische Unterstützung

Zwei Kameras zeichnen eine psychotherapeutische Sitzung auf.
Zwei Kameras zeichnen eine psychotherapeutische Sitzung auf. Die KI wertet die Videosequenzen aus. (Bild zvg)

Künstliche Intelligenz kann Gefühle aufgrund von Gesichtsausdrücken in psychotherapeutischen Situationen verlässlich erkennen. Das zeigt eine Machbarkeitsstudie von Forschenden der Fakultät für Psychologie und der Universitären Psychiatrischen Kliniken (UPK) der Universität Basel. Das KI-System ist auch in der Lage den Therapieerfolg bei Borderline-Patientinnen und -Patienten zuverlässig vorauszusagen.

27. Dezember 2023 | Christian Heuss

Zwei Kameras zeichnen eine psychotherapeutische Sitzung auf.
Zwei Kameras zeichnen eine psychotherapeutische Sitzung auf. Die KI wertet die Videosequenzen aus. (Bild zvg)

Das Gesicht ist ein Spiegel für die Gefühlslage eines Menschen. Die Interpretation von Gesichtsausdrücken, zum Beispiel im Rahmen einer Psychotherapie oder der psychotherapeutischen Forschung, kann deshalb gut charakterisieren wie sich ein Mensch gerade fühlt. Bereits in den 1970er-Jahren entwickelte der Psychologe Paul Ekmann ein standardisiertes Kodierungssystem, um einem Gesichtsausdruck auf einem Bild oder in einer Videosequenz, Basisemotionen wie Glück, Ekel oder Trauer zuzuordnen.

«Das System von Ekman ist weit verbreitet und ein Standard in der psychologischen Emotionsforschung», sagt Dr. Martin Steppan, Psychologe an der Fakultät für Psychologie der Universität Basel.

Die Auswertung und Interpretation aufgezeichneter Gesichtsausdrücke im Rahmen eines Forschungsprojekts oder einer Psychotherapie sind aber extrem zeitaufwendig. Daher weichen Fachleute in der Psychiatrie oft auf wenig verlässliche indirekte Methoden aus wie etwa die Leitfähigkeitsmessung der Haut, die auch ein Gradmesser für emotionale Erregung sein kann.

«Wir wollten herausfinden, ob KIs die Gefühlslage von Patientinnen und Patienten in Videoaufzeichnungen von Therapiesitzungen zuverlässig bestimmen können», sagt Martin Steppan, der die Studie zusammen mit Prof. em. Klaus Schmeck, PD Dr. Ronan Zimmermann und Dr. Lukas Fürer von den Universitären Psychiatrischen Kliniken (UPK) konzipiert hat. Die Ergebnisse veröffentlichten die Forscher im Fachmagazin «Psychopathology».

KI entgeht kein Gesichtsausdruck

Die Forschenden verwendeten dazu frei verfügbare künstliche neuronale Netze, die mithilfe von über 30'000 Gesichtsfotos auf die Erkennung von sechs Basisemotionen trainiert wurden: Glück, Überraschung, Ärger, Abscheu, Trauer, und Angst. Am Center for Scientific Computing der Universität Basel analysierte diese KI danach Videodaten der Therapiesitzungen von insgesamt 23 Borderline-Patientinnen und -Patienten. Insgesamt über 950 Stunden an Videoaufnahmen mussten die Hochleistungsrechner für diese Studie verarbeiten.

Das Resultat war erstaunlich: Der statistische Vergleich zwischen der Auswertung von drei geschulten Therapeuten und der KI zeigten eine bemerkenswerte Übereinstimmung. Die KI beurteilte die Gesichtsausdrücke so verlässlich wie der Mensch. Darüber hinaus erkannte die KI aber auch kürzeste Gefühlsregungen im Millisekunden Bereich, beispielsweise ein kurzes Lächeln oder einen Ausdruck von Ekel.


Originalpublikation

Martin Steppan, Ronan Zimmermann, Lukas Fürer, Matthew Southward, Julian Koenig, Michael Kaess, Johann Roland Kleinbub, Volker Roth Klaus Schmeck
Machine Learning Facial Emotion Classifiers in Psychotherapy Research: A Proof-of-Concept Study
Psychopathology (2023), doi: 10.1159/000534811

nach oben