x
Loading
+ -

Kühlung von Materie aus Distanz

Illustration einer vibrierenden Membran und einer Atomwolke, gekoppelt durch eine Laserlicht-Schleife
Über Licht wird eine vibrierende Membran mit einer Wolke aus Atomen zu einem Regelkreis gekoppelt. Die Temperatur der beiden unterschiedlichen Quantensysteme bestehend aus der Membran und den Spins der Elektronen reguliert sich so gegenseitig, ohne dass eine Messung von aussen notwendig ist. (Bild: Departement Physik, Universität Basel)

Forschende der Universität Basel können zwei Quantensysteme über eine Distanz von einem Meter zu einem Regelkreis verbinden. In diesem Regelkreis wird das eine Quantensystem – eine vibrierende Membran – durch das andere Quantensystem – eine Wolke von Atomen – gekühlt. Die beiden Systeme sind über Laserlicht miteinander gekoppelt. Derartige Schnittstellen, an denen Quantensysteme unterschiedlicher Natur auch über vergleichsweise grosse Distanzen interagieren, sind für zukünftige Quantentechnologien von grosser Bedeutung.

02. Februar 2022

Illustration einer vibrierenden Membran und einer Atomwolke, gekoppelt durch eine Laserlicht-Schleife
Über Licht wird eine vibrierende Membran mit einer Wolke aus Atomen zu einem Regelkreis gekoppelt. Die Temperatur der beiden unterschiedlichen Quantensysteme bestehend aus der Membran und den Spins der Elektronen reguliert sich so gegenseitig, ohne dass eine Messung von aussen notwendig ist. (Bild: Departement Physik, Universität Basel)

Das Prinzip der Rückkopplung kennen wir alle: Mithilfe eines Thermostaten an der Heizung regeln wir die Raumtemperatur. Der Thermostat misst die aktuelle Temperatur, gleicht diese mit einem Sollwert ab und regelt je nach Messwert den Durchfluss der Heizung. Solche Regelkreise begegnen uns in zahlreichen Bereichen des Alltags und der Technik.

Auch in der Quantenwelt sind Regelkreise nützlich, um ein System in einen gewünschten Zustand zu bringen. Oft ist es beispielsweise erforderlich bei sehr tiefen Temperaturen nahe des absoluten Nullpunkts zu arbeiten, um die sensiblen Effekte der Quantenwelt beobachten und für neue technologische Anwendungen nutzen zu können. In der Welt der Quanten, in der so Vieles anders ist als in der uns vertrauten makroskopischen Welt, funktioniert die klassische Rückkopplung, bei der eine Messung innerhalb eines Regelkreises notwendig ist, jedoch nur eingeschränkt. 

In Quantensystemen führt nämlich allein schon die Messung zu einer Veränderung des Systems und somit zu einer unkontrollierten Rückwirkung. Um ein Quantensystem zu kühlen, nutzen Forschende um Prof. Dr. Philipp Treutlein vom Departement Physik und Swiss Nanoscience Institute der Universität Basel daher erstmals das Prinzip der kohärenten Rückkopplung und veröffentlichten die Ergebnisse im Fachjournal Physical Review X.

Kontrolle ohne Messung

Bei der kohärenten Rückkopplung interagieren zwei Quantensysteme miteinander. Da eines der Systeme als Kontrolleinheit des anderen Systems fungiert, ist keine Messung erforderlich. Stattdessen wird das Kontrollsystem so eingestellt, dass es das Zielsystem durch quantenmechanisch kohärente Wechselwirkung in einen gewünschten Zustand bringt.

Ganz konkret haben die Forschenden mit Atomen als quantenmechanisches Kontrollsystem die Temperatur einer makroskopischen, aber sehr dünnen vibrierenden Membran gesteuert. Dazu wird zunächst der Eigendrehimpuls der Atome in einer wohldefinierten Richtung ausgerichtet, was einem sehr kalten Zustand nahe des absoluten Nullpunkts entspricht. Die Membran hingegen vibriert aufgrund ihrer hohen Temperatur stark.

Durch quantenmechanische Wechselwirkung tauschen Atome und Membran ihre Zustände - die Membran wird kalt, ihre Energie wurde an die Atome übertragen. Diese können mit Laserlicht aber sehr schnell wieder in den Ausgangszustand zurückversetzt und für eine erneute Energieübertragung von der Membran vorbereitet werden.

nach oben