x
Loading
+ -

Spin-Korrelation zwischen gepaarten Elektronen nachgewiesen

Gepaarte Elektronen
Elektronen verlassen einen Supraleiter nur als Paare mit jeweils entgegengesetztem Spin. Werden beide Wege der Elektronen für eine Spinart durch parallele Spinfilter blockiert, sind gepaarte Elektronen aus dem Supraleiter blockiert – der Stromfluss nimmt ab. (Bild: Universität Basel, Departement Physik/Scixel)

Physiker der Universität Basel haben erstmals experimentell belegt, dass es eine negative Korrelation gibt zwischen den beiden Spins eines verschränkten Elektronenpaares aus einem Supraleiter. Für ihre Untersuchung verwendeten sie Spinfilter aus Nanomagneten und Quantenpunkten, wie sie im Wissenschaftsjournal «Nature» berichten.

23. November 2022 | Christel Möller

Gepaarte Elektronen
Elektronen verlassen einen Supraleiter nur als Paare mit jeweils entgegengesetztem Spin. Werden beide Wege der Elektronen für eine Spinart durch parallele Spinfilter blockiert, sind gepaarte Elektronen aus dem Supraleiter blockiert – der Stromfluss nimmt ab. (Bild: Universität Basel, Departement Physik/Scixel)

Die Verschränkung zweier Teilchen ist eines derjenigen Phänomene in der Quantenphysik, die sich kaum mit der alltäglichen Erfahrung vereinbaren lässt. Bei Verschränkung, die Albert Einstein als «spukhafte Fernwirkung» beschrieben hat, sind bestimmte Eigenschaften zweier Teilchen eng miteinander verbunden, selbst wenn sie weit voneinander entfernt sind. Die Erforschung der Verschränkung bei Lichtteilchen wurde mit dem diesjährigen Nobelpreis für Physik ausgezeichnet.

Auch zwei Elektronen können miteinander verschränkt sein – zum Beispiel über ihren Spin. So formieren sich in einem Supraleiter je zwei Elektronen zu sogenannten Cooper-Paaren, in denen die einzelnen Spins verschränkt sind und die für die verlustfreie Stromleitung sorgen.

Forschende am Swiss Nanoscience Institute und am Departement Physik der Universität Basel sind seit einigen Jahren in der Lage, Elektronenpaare aus einem Supraleiter herauszuholen und die beiden Elektronen räumlich zu trennen. Dies gelingt mittels zweier Quantenpunkte – parallel geschaltete nanoelektronische Strukturen, die jeweils nur für einzelne Elektronen durchlässig sind.

Entgegengesetzte Elektronenspins aus Cooper-Paaren

Jetzt hat das Team von Prof. Dr. Christian Schönenberger und Dr. Andreas Baumgartner in Zusammenarbeit mit Forschenden um Prof. Dr. Lucia Sorba vom Istituto Nanoscienze-CNR und von der Scuola Normale Superiore in Pisa erstmals experimentell belegt, was theoretisch schon lange erwartet wurde: Elektronen aus einem Supraleiter treten immer paarweise und mit entgegengesetzten Spins auf.

Die Physiker konnten mit einem innovativen Versuchsaufbau messen, dass der Spin des einen Elektrons nach oben zeigt, wenn der andere nach unten gerichtet ist, und umgekehrt. «Wir haben damit die negative Korrelation zwischen den Spins von gepaarten Elektronen experimentell bewiesen», erklärt Andreas Baumgartner, der das Projekt geleitet hat.

Gepaarte Elektronen
Im Gegensatz zu parallelen Spinfiltern ist es bei antiparallelen Spinfiltern für Elektronenpaare erlaubt, aus dem Supraleiter auszutreten, was sich als deutlich höheren Strom in beiden Wegen messen lässt. (Bild: Universität Basel, Departement Physik/Scixel)

Den Forschenden gelang dies, indem sie einen selbst entwickelten Spinfilter eingesetzt haben. Dazu erzeugten sie in jedem der beiden Quantenpunkte, welche die Elektronen des Cooper-Paares trennen, mithilfe von winzigen Magneten individuell einstellbare Magnetfelder. Da der Spin auch das magnetische Moment eines Elektrons bestimmt, wird nur jeweils eine bestimmte Spin-Sorte durchgelassen.

«Wir können beide Quantenpunkte so einstellen, dass vor allem Elektronen mit einem bestimmten Spin durchgelassen werden», beschreibt Erstautor Dr. Arunav Bordoloi den experimentellen Aufbau. «Durch den einen Quantenpunkt gelangt zum Beispiel ein Elektron mit Spin nach oben und durch den anderen Quantenpunkt ein Elektron mit dem Spin nach unten, oder umgekehrt. Wenn beide Quantenpunkte so eingestellt sind, dass sie nur dieselben Spins durchlassen, werden die elektrischen Ströme in beiden Quantenpunkten reduziert, obwohl ein einzelnes Elektron durchaus einen einzelnen Quantenpunkt passieren dürfte.»

nach oben