Das Atom ohne Eigenschaften
Die Welt der kleinsten Teilchen folgt den Regeln der Quantenmechanik. Sie lassen es zu, dass die Eigenschaften eines Teilchens völlig unbestimmt und dennoch stark mit denen anderer Teilchen verknüpft sind. Ein Team von theoretischen und experimentellen Physikern der Universität Basel hat diese sogenannten Bell-Korrelationen erstmals zwischen mehreren Hundert Atomen beobachtet. Das berichten die Forscher in der Fachzeitschrift «Science».
21. April 2016
Gewöhnliche Gegenstände besitzen ihre Eigenschaften unabhängig voneinander und unabhängig davon, ob wir sie beobachten oder nicht. Einsteins berühmte Frage, ob der Mond auch da sei, wenn niemand hinschaue, beantworten wir mit einem sicheren Ja. In der Welt der kleinsten Teilchen gelten diese scheinbaren Gewissheiten nicht. Der Aufenthaltsort, die Geschwindigkeit oder die Orientierung des magnetischen Moments eines Atoms kann völlig unbestimmt sein und dennoch stark von Messungen an anderen, auch weit entfernten Atomen abhängen.
Experimenteller Test von Bell-Korrelationen
Unter der (falschen) Annahme, dass die Atome ihre Eigenschaften jeweils unabhängig von der Messung und unabhängig voneinander besitzen, lässt sich eine sogenannte Bell-Ungleichung aufstellen. Wird sie durch die Resultate eines Experiments verletzt, folgt daraus, dass die Eigenschaften der Atome voneinander abhängen müssen. Man spricht dann von Bell-Korrelationen zwischen den Atomen. Diese haben auch zur Folge, dass jedes einzelne Atom seine Eigenschaften erst im Moment der Messung erhält – vor der Messung sind diese Eigenschaften nicht nur unbekannt, sondern sie existieren gar nicht.
Forscher um die Professoren Nicolas Sangouard und Philipp Treutlein von der Universität Basel haben zusammen mit Kollegen aus Singapur solche Bell-Korrelationen nun erstmals in relativ grossen Systemen beobachtet, nämlich zwischen 480 Atomen eines Bose-Einstein-Kondensats. Frühere Experimente konnten Bell-Korrelationen mit höchstens 4 Lichtteilchen oder 14 Atomen nachweisen. Ihr Resultat bedeutet, dass die seltsamen Quanteneffekte auch in grossen Systemen eine Rolle spielen können.
Grosse Anzahl miteinander wechselwirkender Teilchen
Um Bell-Korrelationen in einem Vielteilchensystem nachzuweisen, mussten die Forscher zunächst eine neue Methode entwickeln, die ohne eine Messung jedes einzelnen Teilchens auskommt, was jenseits der heutigen Möglichkeiten läge. Dies gelang ihnen mithilfe einer erst seit Kurzem bekannten Bell-Ungleichung. Ihre Methode konnten die Basler Forscher direkt im Labor an kleinen Wolken aus ultrakalten Atomen ausprobieren, die durch Laserlicht auf wenige Milliardstel Grad über dem absoluten Nullpunkt abgekühlt werden. Darin stossen die Atome ständig zusammen, sodass sich ihre magnetischen Momente langsam miteinander verschränken. Wenn diese Verschränkung ein gewisses Mass erreicht hat, lassen sich Bell-Korrelationen nachweisen. Autor Roman Schmied erklärt: «Man würde erwarten, dass zufällige Stösse bloss Unordnung verursachen. Doch dadurch werden die quantenmechanischen Eigenschaften der Atome so stark miteinander verknüpft, dass sie die klassische Statistik verletzen.»
Konkret wird zuerst jedes der Atome in eine quantenmechanische Überlagerung zweier Zustände gebracht. Nachdem die Atome dann durch Stösse miteinander verschränkt wurden, zählen die Forscher, wie viele der Atome nun tatsächlich in jedem der beiden Zustände sind. Diese Aufteilung schwankt von Versuch zu Versuch zufällig. Wenn nun diese Schwankungen unter eine bestimmte Schwelle fallen, scheint es, als ob die Atome miteinander eine «Abmachung» getroffen hätten, wie das Messergebnis auszufallen habe; diese Abmachung beschreibt genau die Bell-Korrelationen.
Wissenschaftliches Neuland
Die vorgestellte Arbeit, die im Rahmen des Nationalen Forschungsschwerpunkts Quantenwissenschaften und -technologie (NCCR QSIT) gefördert wurde, könnte neue Möglichkeiten in der Quantentechnologie erschliessen, etwa um Zufallszahlen zu erzeugen oder um Daten abhörsicher zu übertragen. Ausserdem öffnen sich neue Perspektiven für die Grundlagenforschung: «Bell-Korrelationen in Vielteilchensystemen sind ein weitgehend unerforschtes Gebiet und es ist noch nicht absehbar, was sich alles daraus entwickeln wird – wir betreten mit unseren Experimenten Neuland», so Prof. Philipp Treutlein.
Originalbeitrag
Roman Schmied, Jean-Daniel Bancal, Baptiste Allard, Matteo Fadel, Valerio Scarani, Philipp Treutlein, Nicolas Sangouard
Bell Correlations in a Bose-Einstein Condensate
Science (2016), doi: 10.1126/science.aad8665
Weitere Auskünfte
- Prof. Dr. Nicolas Sangouard, Universität Basel, Departement Physik, Theoretische Quantenoptik, Tel. +41 61 267 39 15, E-Mail: nicolas.sangouard@unibas.ch
- Prof. Dr. Philipp Treutlein, Universität Basel, Departement Physik, Experimentalphysik, Tel. +41 61 267 37 66, E-Mail: philipp.treutlein@unibas.ch